
A Morphosyntactic Brill Tagger
for Inflectional Languages

Szymon Acedański1,2

1 Institute of Informatics, University of Warsaw,
ul. Banacha 2, 02-097 Warszawa, Poland,

accek@mimuw.edu.pl,
2 Institute of Computer Science, Polish Academy of Sciences,

ul. Ordona 21, 01-237 Warszawa, Poland

Abstract. In this paper we present and evaluate a Brill morphosyn-
tactic transformation-based tagger adapted for specifics of highly inflec-
tional languages. Multi-phase tagging with grammatical category match-
ing transformations and lexical transformations brings significant accu-
racy improvements comparing to previous work. Evaluation shows the
accuracy of 92.44% for the Polish language which is higher than the same
metric for the other known taggers of Polish: stochastic trigram tagger
(90.59%) and hybrid tagger TaKIPI employing decision tree classifier
and automatically extracted rule-based tagger used for tagging the IPI
PAN Corpus of Polish (91.06%).

Key words: PoS tagger, Brill tagger, inflectional language tagger, mor-
phosyntactic tagger, lexical rules

1 Introduction

Morphosyntactic tagging is a classic problem in NLP with applications in many
higher level processing solutions, namely parsing and then information retrieval,
speech recognition and machine translation. Part of Speech tagging for English is
already well explored and many taggers have been built with accuracy exceeding
98%. In case of inflectional languages these numbers are much lower, reaching
95,78% for Czech [1] and 92.55% for Polish (per [2]; evaluation by Karwańska
and Przepiórkowski [3] reports 91.30%).

The most prominent difference between English and inflectional languages is
the size of the tagset. Brill [4] uses Brown’s Tagset for English, which consists
of almost 200 tags, whereas the IPI PAN Polish tagset [5] contains theoretically
over 4000 tags and the manually disambiguated part of the IPI PAN Corpus
of Polish [6] used for evaluation contains 1054 different tags. The tags for such
languages have a specific structure — along with the part of speech, they contain
values of grammatical categories appropriate for the particular part of speech
(see Table 1 for an example in Polish). Detailed description of the tagset and
the meaning of particular grammatical categories can be found in [5].

2

Table 1. Example tags in Brown’s English Tagset and IPI PAN Polish tagset.

English VBD verb, past tense

PPS pronoun, personal, nominative, 3rd person
singular

Polish praet:sg:m1:perf l-participle, singular, human masculine,
perfective aspect

ppron12:sg:nom:f:pri 1st person pronoun, singular, nominative,
feminine

Not only the large tagset makes disambiguation a difficult task, but also free
word order in considered languages and even problems of unambiguously defining
the correct tags in some cases. Because of this, some corpora allow multiple tags
to be assigned to a single segment, whereas other require fully disambiguated
tagging, usually providing detailed instructions on how to do this. This matter
will be further discussed in the Evaluation section.

Several tagging techniques are commonly known. The most frequently used
approaches are: stochastic, e.g., based on Hidden Markov Models [7], and rule-
based3. Brill [4] presents a transformation-based Part of Speech tagger for En-
glish, which automatically chooses good quality transformations given a number
of general transformation templates and a training corpus. The tagger used for
morphosyntactic disambiguation of the current version of the IPI PAN corpus,
called TaKIPI [8], is a hybrid (multiclassifier) transformation-based tagger. Some
of the transformations it uses were extracted automatically using machine learn-
ing algorithms and then reviewed and adjusted by linguists.

In this paper we describe and evaluate an implementation of the Brill’s al-
gorithm, adapted for rich inflectional languages. First steps towards this were
described by Acedański and Gołuchowski in 2009 [9], but that tagger was then
rewritten with different approaches used in most parts. As in previous work, the
adaptation involves splitting the process into phases, so that at first only the
part of speech and a few grammatical categories are disambiguated. Remain-
ing categories are determined in the second pass. On top of it, the new, more
general approach to transformation templates was developed, and additional
transformation templates allowing for transformations which look at particular
grammatical categories of surrounding segments were added. Also lexical trans-
formations were used. Finally the tagger was implemented using a new simplified
algorithm based on FastTBL [10] and parallelized for better performance.

3 Throughout this paper, the term rule-based tagger is used to denote systems using
hand-written rules. For the algorithms involving automatic extraction of rules, the
term transformation-based tagger is used

3

2 The original Brill tagger

Let us describe the original Brill’s algorithm in some detail. We assume that we
are given three corpora — a large high-quality tagged training corpus, smaller
tagged corpus called patch corpus and another one — test corpus, which we
want to tag. Brill also assumes, that only one correct tag can be assigned to a
segment. Let’s denote the tag assigned to i-th segment as ti.

Tagging is performed in four steps:

1. A simple unigram tagger is trained using the large training corpus.
2. The unigram tagger is used to tag the patch corpus.
3. There are certainly some errors in the tagging of the patch corpus. Therefore

we want to generate transformations which will correct as many errors as
possible.
(a) We are given a small list of so called transformation templates. Brill uses

the following templates in his paper:
i. ti := A if ti = B ∧ ∃o∈O1ti+o = C,
ii. ti := A if ti = B ∧ ∀o∈O2ti+o = Co,
iii. ti := A if ti = B and i-th word is capitalized,
iv. ti := A if ti = B and (i− 1)-th word is capitalized.
where
– O1 ∈ {{1}, {−1}, {2}, {−2}, {1, 2}, {−1,−2}, {1, 2, 3}, {−1,−2,−3}},
– O2 ∈ {{−2,−1}, {−1, 1}, {1, 2}},
– A, B, C, Co — any tags.

(b) For each transformation r which can be generated using these templates,
we compute two statistics:
i. good(r) — the number of places in the patch corpus where the

transformation matches and changes an incorrect tag into a correct
one,

ii. bad(r) — the number of places in the patch corpus where the trans-
formation matches and changes the tagging from correct to incorrect.

(c) Now we find transformation rb, which maximizes good(r)−bad(r), i.e.
reduces the largest possible number of errors when applied. We save the
transformation and apply it to the patch corpus. If the patch corpus still
contains many errors, return to 3a.

4. The test corpus is first tagged using the unigram tagger, and then the saved
transformations are applied in order.

If the test corpus was previously manually tagged, we can evaluate the perfor-
mance of the tagger.

3 Adaptation for inflectional languages

The algorithm described in the previous section was subsequently extended by
applying a number of techniques targeted at improving accuracy of tagging of
inflectional languages. These techniques are:

4

– multi-pass tagging — gradually disambiguating parts of tags,
– generalized transformation templates — allowing for more flexible design

and then specific templates for inflectional languages relying on interdepen-
dencies between values of grammatical categories,

– lexical transformation templates — allowing to match prefixes and suffixes
of processed lexemes,

– simplified implementation of FastTBL algorithm [10] and parallelization of
the tagging engine for good performance and maintainability

3.1 Multi-pass tagging

The first technique is used to reduce the size of the transformation space and to
avoid too specific transformations in the first stage. It is inspired by [9], where
the authors split the tags into two parts sharing only the part-of-speech. In
the first run of the Brill tagger the tagset consists of only one of the parts of
tags. In the second run, the tagset comprised of the other parts is used, but the
previously selected parts of speech are fixed for the second pass. Also Tufiş [11]
proposes using a reduced tagset with easily recoverable grammatical categories
not present, to improve performance. Out goal is different though — we try to
leave some of the hard to disambiguate categories for later stages so that the
tagger already has more information from preceding phases.

We consider a sequence Ti (i ∈ {0, . . . , k−1}) of gradually simplified tagsets.
T0 is the original tagset and Tj+1 (j ∈ {0, . . . , k − 2}) are some other tagsets.
Projections mapping specific tags to more general tags are also needed: πj : Tj →
Tj+1. For each of the tagsets a separate pass of the Brill algorithm is performed.
The tag assigned to the i-th segment in the p-th pass (p ∈ {1, . . . , k}) is denoted
by tpi . In the first pass the simplest tagset Tk−1 is used. In the p-th pass, for i-th
segment, only tags tpi ∈ Tk−p are considered such that πk−p(t

p
i) = tp−1i .

In our experiments we used only two tagsets — T0 being the original and
T1 which had information about part of speech, case and person only. π0 was
a natural projection i.e. the one which strips values of grammatical categories
not present in T1. The produced software can be configured for more than two
phases with different tagsets.

3.2 Generalized transformation templates

In the original Brill classifier, all the transformation templates are of the following
form:

Change ti to A if it is B and

In our tagger we generalize the possible transformation templates by allowing
other operations than changing the entire tag to be performed. Also, the current
tag of a lexeme need not be fully specified in an instantiation of some transfor-
mation template.

A particular transformation template consists of a predicate template which
specifies conditions on the context where the transformation should be applied,

5

and an action template describing the operation to be performed if the predicate
matches. For example in the transformation template “change the tag to A if the
tag is B”, the first part (“change the tag to A”) is the action template and the
second part (“the tag is B”) is the predicate template. The same nomenclature
is applied to instantiated transformations.

This generalization was performed in order to allow using more general trans-
formations than allowed by the original algorithm. Let’s denote by ti|case the
value of grammatical category case in the tag of the i-th segment of the text.
Now consider the very robust linguistic rule “if an adjective is followed by a noun,
then they should agree in case”.
This rule may be composed of

– an action: ti|case := ti−1|case
– a predicate: ti|pos = subst ∧ ti−1|pos = adj

The proposed tagger is able to generate transformations resembling such rules.
It uses the following predicate templates:

1. tpi = T ∧ ∃o∈Otpi+o = U,
2. tpi = T ∧ ∀o∈Otpi+o = Uo,
3. tpi = T ∧ ∃o∈O1t

p−1
i+o = U′,

4. tpi |pos = P ∧ tpi |C = X ∧ ∃o∈O
(
tpi+o|pos = Q ∧ tpi+o|C = Y

)
,

5. tpi |pos = P ∧ tpi |C = X ∧ ∀o∈O
(
tpi+o|pos = Qo ∧ tpi+o|C = Yo

)
,

and action templates:

1. tpi := V,
2. tpi |pos := R,
3. tpi |C := Z,

where

– T, U, Uo, V — any tags valid in pass p,
– U′ — any tag valid in pass p− 1,
– P, Q, Qo, R — any parts of speech valid in pass p,
– C — any grammatical category valid in pass p,
– X, Y, Yo, Z — any values valid for category C,
– O ∈ {{1}, {−1}, {2}, {−2}, {1, 2}, {−1,−2}, {1, 2, 3}, {−1,−2,−3}},
– template variables P, Q, Qo (for all o at the same time), R, X, Y, Yo (for

all o at the same time) and Z could have a special value ? meaning any.

Additionally, the actions were implemented in such a way, that they were not
applied if they were to assign a tag not reported by the morphological analyzer for
a particular segment. In case of actions 2 and 3, the nearest possible tag was used
instead. The metric used here is the number of matching values of grammatical
categories, but only tags with the expected part of speech are considered. If no
such tags are possible, the action is not performed.

6

3.3 Lexical transformations

Another extension which proved very useful are lexical transformation templates
proposed by Brill in a later paper [12]. Megyesi [13] subsequently explored them
for Hungarian (which is an agglutinative language, with a number of affixes
possessing grammatical functions). The results were very promising. The author
used the following predicate templates:

1. tpi = T ∧ orthi contains letter L,
2. tpi = T ∧ orthi starts/ends with S, |S| < 7,
3. tpi = T ∧ orthi with deleted prefix/suffix S, |S| < 7, is a word,
4. tpi = T ∧ (orthi1 = W ∨ orthi+1 = W).

Here orthi simply denotes the orthographic representation of the i-th segment.
Inspired by this work, and after some experiments, we extended the list of pred-
icate templates by only the prefix/suffix matching:

1a. tpi = T ∧ orthi ends with S′

1b. tpi = T ∧ orthi starts with S′

4a. t
p
i |pos = P ∧ tpi |C = X ∧ orthi ends with S

∧ ∃o∈O
(
tpi+o|pos = Q ∧ tpi+o|C = Y

)
4b.

tpi |pos = P ∧ tpi |C = X
∧ ∃o∈O

(
tpi+o|pos = Q ∧ tpi+o|C = Y

∧ orthi+o ends with S
)

where S and S′ are any strings no longer than 3 and 2 characters respectively.
This resulted in over 1.5% accuracy improvement over the Brill tagger with only
generalized transformations, as tested for Polish.

3.4 Simplified FastTBL implementation

The idea behind the FastTBL algorithm [10] is the minimization of the number of
accesses to data structures for storing good(·) and bad(·) functions. Unfortunately
this comes with the increased complexity — there are 8 possible branches of
execution in the main loop. Therefore we designed a simplified version of this
algorithm presented as Algorithm 1. It allows redundant updates of good(·) and
bad(·), but this extra work does not significantly influence the total running time
of the algorithm, because the most computationally intensive work is generating
the possible transformations in lines 2, 20 and 27, as well as the application of
the generated transformation in 18.

3.5 Parallelization

Finally, the tagger was implemented specifically for multiprocessing environ-
ment, mostly because of the high memory requirements for storing the good(·)
and bad(·) functions. The ordinary 32-bit Linux operating system originally used
for experiments does not allow for more than 2GB of memory per process. The

7

Algorithm 1 Pseudocode of the simplified FastTBL algorithm.
1: {Initializing good and bad data structures}
2: for i = 0 to len(text) do
3: for each transformation r which matches at position i do
4: if r corrects the classification of i-th segment then
5: increase good(r)
6: else if r changes the classification of i-th segment from correct to wrong then
7: increase bad(r)
8: end if
9: end for
10: end for
11:
12: {Main loop — generating transformations}
13: loop
14: b := argmaxr(good(r)− bad(r)) {the best transformation}
15: if good(b)− bad(b) < threshold then
16: return
17: end if
18: add b to the sequence of generated transformations
19: text′ := text after application of b
20: for each position i in vicinity of the changes performed by b do
21: for each transformation r which matches at position i in text do
22: if r corrected the classification of i-th segment in text then
23: decrease good(r)
24: else if r miscorrected the classification of i-th segment in text then
25: decrease bad(r)
26: end if
27: end for
28: for each transformation r which matches at position i in text′ do
29: if r corrects the classification of i-th segment in text′ then
30: increase good(r)
31: else if r miscorrects the classification of i-th segment in text′ then
32: increase bad(r)
33: end if
34: end for
35: end for
36: text := text′

37: end loop

8

OpenMPI [14] library was used, which also gives the possibility to run the tagger
on multiple machines in parallel in a standardized way.

The workload is split between processes by distributing the transformation
templates considered above (and the values of the O template variable, see sec-
tion 3.2) among them. Therefore every process stores only a part of all the
transformations. In each round of the algorithm the best transformation is col-
lectively found, broadcast to all the processes, and the processing continues as
shown in Algorithm 1.

4 Evaluation

The tagger was evaluated on two corpora of Polish: the IPI PAN Corpus of Polish
[6] and the new National Corpus of Polish [15] (in preparation; version dated
2009–12–16 was used). The former corpus is allowed to have multiple golden
tags for one segment, whereas the latter is fully disambiguated. For evaluation
the manually disambiguated subcorpora were used, of size 880 000 and 648 000
segments, respectively.

The methodology proposed in [3] was used (which was also employed in [16]).
A corpus was split into training part and evaluation part by ratio 9:1. The train-
ing part was used both as the training and patch corpus of the Brill algorithm.
All taggers were configured to choose exactly one tag for each segment. Ten-fold
cross-validated results are presented in Tables 2 and 3.

Table 2. Evaluation results — IPI PAN Corpus. Sources: [3, 16]

Tagger
Full tags PoS only

C WC P R F C WC P R F

Trigram HMM [17] 87.39 90.59 84.51 83.09 83.80 96.79 97.11 96.75 96.78 96.77

TaKIPI [2] 88.68 91.06 90.94 83.78 87.21 96.53 96.54 96.58 96.71 96.65

Brill [9] (2009) 89.46 83.55 86.40

Brill (this paper) 90.00 92.44 92.44 86.05 89.13 98.17 98.18 98.18 98.16 98.17

Correctness (C) — percent of segments for which the tagger assigned exactly
the same set of tags as the golden standard. Please note that in the IPI PAN
corpus for some segments several tags are marked correct.

Weak correctness (WC) — percent of segments for which the sets of inter-
pretations determined by the tagger and the golden standard are not disjoint.

Precision (P) — percent of tags (given by the morphological analyzer) which
were both chosen by the tagger and the golden standard.

Recall (R) — percent of golden tags which were chosen by the tagger.
F-measure (F) — F = 2PR

P+R .

9

Table 3. Evaluation results — National Corpus of Polish (full tags).

Thra Time (s)
transformations

Acc. (%)
P1 P2

2 1450 5175.1 2748.0 92.82%

6 632 1422.6 612.2 92.68%

a The minimum good(r)− bad(r) of the generated transformations.

Accuracy (Acc.) — any of the above in the case of the National Corpus of
Polish, which has always one golden tag per segment.

The times in Table 3 were obtained on a multiprocessor machine with Xeon
CPUs clocked at 2.4 GHz (with 12MB cache). 6 processes were run. The tag-
ger was compiled in 64-bit mode, which probably negatively impacted perfor-
mance due to almost doubled memory usage (∼1.2 GB per process compared to
∼0.7 GB in similar 32-bit setup), but this was not verified.

It is also worth noting that only TaKIPI does not disambiguate words not
known to the morphological analyser, even if the input contains a number of
possible morphosyntactic interpretations.

To provide a better insight into the classes of errors generated by the tagger,
detailed statistics are presented in Tables 4, 5 and 6. It can be clearly seen
that the most problems the tagger has concern case and gender. Slightly
fewer errors are reported for number. This is similar to previous findings and
not unexpected for Polish. Nevertheless, the introduction of lexical elements
in transformation templates gave over 1.5% improvement in accuracy (on the
National Corpus of Polish). Over 60% of all generated transformations do contain
lexical matchers. The vast majority of them is used for determining the correct
case by matching nearby segments’ suffixes (see Table 7). Also, they are used
for disambiguating rare flexemic classes like qub from conj.

There are also some categories of errors in the testing corpush, which would
not be disambiguated by a human looking at the same amount of context. Let
us present several examples:

— Long nominal phrases, especially near sentence or subordinate clause bound-
aries:
... tego znaku. Zamiłowanie do sportu i ...
... this sign. Passion for sport and ...
Here the underlined word can have either nominal or accusative case.

— Expressions with words like państwo, which may be either a noun (country)
or a pronoun (formal plural you):
..., o czym państwo w tej chwili ...
..., what you/the country at the moment ...

This calls for enlarging the lookup context in the future. For example, predicates
like “the nearest segment with part-of-speech P has category C equal X” may be

10

Table 4. Error rates for parts of speech (shown only values > 0.01%).

Expected PoS # errs % toks
subst 3028 0.47%
qub 1658 0.26%
adj 1596 0.25%
ger 1392 0.21%
conj 652 0.10%
adv 597 0.09%
ppas 522 0.08%

Expected PoS # errs % toks
prep 471 0.07%
pred 363 0.06%
num 326 0.05%
fin 268 0.04%
pact 208 0.03%
comp 172 0.03%

Table 5. Error rates for grammatical categories (shown only values > 0.01%).

Category # errs % toks
case 21259 3.28%
gender 16151 2.49%
number 4645 0.72%
aspect 416 0.06%
accommodability 193 0.03%

Table 6. Specific errors in assignment of grammatical categories (top 15 records).

Expected Actual # errs % toks
case(nom) case(acc) 7188 1.11%
case(acc) case(nom) 4717 0.73%
gender(m1) gender(m3) 2543 0.39%
case(gen) case(acc) 2533 0.39%
number(sg) number(pl) 2460 0.38%
number(pl) number(sg) 2185 0.34%
gender(m3) gender(m1) 1989 0.31%
gender(m3) gender(n) 1662 0.26%
gender(m1) gender(f) 1375 0.21%
gender(f) gender(m3) 1243 0.19%
gender(m3) gender(f) 1214 0.19%
gender(f) gender(n) 1115 0.17%
case(gen) case(nom) 1105 0.17%
case(acc) case(gen) 963 0.15%
gender(n) gender(m3) 907 0.14%

Table 7. Sample lexical transformations generated by the tagger in the first pass.

No. r good(r) bad(r)

3

Change case of preposition from acc to loc if it ends
with na (in practice this asks for the particular preposi-
tion na, in English: on) and one of two following segments
has case of loc.

2496 113

7
Change case of an adjective from loc to inst if one of
the three following segments has case of inst and ends
with em.

921 29

11

good candidates for inclusion. This requires extending the vicinity parameter,
and therefore slows down the computations, but may result in better accuracy.

5 Conclusions and future work

The paper presents and evaluates a number of techniques designed to adapt
Brill tagger for inflectional languages with large tagsets. Especially adding pred-
icates and actions which allow matching or changing values of single grammati-
cal categories, as well as adding lexical transformations, were the most valuable
modifications of the original algorithm.

It is worth noting that the tagger does not need any linguistic knowledge pro-
vided, except the specification of tagsets and the information about the gram-
matical categories which should be disambiguated in consecutive phases. Rule
templates are not designed for any specific language. Even if some transforma-
tion templates are not suitable for considered language, they may negatively
impact only performance, but not accuracy.

As far as the quality of the new tagger is concerned, the reported numbers
are at least 1.1% higher than for other existing taggers for Polish, although
this should be independently verified. Also, it may be an interesting experiment
to use the tagger for other languages, like Czech or Hungarian (maybe after
inclusion of all lexical transformations proposed by Megyesi [13]). There are also
some other places for improvement not explored yet, namely:

1. Experimenting with different simplified tagsets and more than 2 passes. Tufiş
[11] proposes using an additional reduced tagset to collapse grammatical cat-
egories which are unambiguously recoverable from the lexicon. This reduces
the transformation space, improving performance. Others suggest joining
some parts of speech or values of grammatical categories which have simi-
lar grammatical functions in the first pass, to disambiguate them later. For
example in an intermediate phase one would use the value nom-or-acc for
case,

2. Simply enlarging the context of transformation templates may be a good
way to go,

3. Designing transformation templates which look for the nearest segment with
a particular part of speech or value of some grammatical category may im-
prove accuracy.

The full source code of the tagger is available under the terms of the GNU
GPL v3 from its project page: http://code.google.com/p/pantera-tagger/.

Acknowledgments

I’d like to sincerely thank my academic advisor Prof. Adam Przepiórkowski for
his valuable help, always inspiring talks and effective motivation.

The research is funded in 2007–2010 by a research and development grant
from the Polish Ministry of Science and Higher Education.

12

References
1. Spoustová, D.: Combining Statistical and Rule-Based Approaches to Morphological

Tagging of Czech Texts. The Prague Bulletin of Mathematical Linguistics (89)
(2008) 23–40

2. Piasecki, M., Godlewski, G.: Effective Architecture of the Polish Tagger. In Sojka,
P., Kopecek, I., Pala, K., eds.: TSD. Volume 4188 of Lecture Notes in Computer
Science., Springer (2006) 213–220

3. Karwańska, D., Przepiórkowski, A.: On the Evaluation of Two Polish Taggers.
In: Proceedings of the 2009 PALC Conference in Łódź (to appear), Frankfurt/M.,
Peter Lang (2009)

4. Brill, E.: A simple rule-based part of speech tagger. In: Proceedings of the Third
Conference on Applied Natural Language Processing, Morristown, NJ, USA, As-
sociation for Computational Linguistics (1992) 152–155

5. Przepiórkowski, A., Woliński, M.: A Flexemic Tagset for Polish. In: Proceedings
of Morphological Processing of Slavic Languages, EACL 2003. (2003)

6. Przepiórkowski, A.: The IPI PAN Corpus: Preliminary version. Institute of Com-
puter Science, Polish Academy of Sciences, Warsaw (2004)

7. Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics and Speech Recognition.
Second edn. Prentice Hall (February 2008)

8. Piasecki, M., Wardyński, A.: Multiclassifier Approach to Tagging of Polish. In:
Proceedings of 1st International Symposium Advances in Artificial Intelligence and
Applications, unknown (2006)

9. Acedański, S., Gołuchowski, K.: A Morphosyntactic Rule-Based Brill Tagger for
Polish. In: Recent Advances in Intelligent Information Systems, Kraków, Poland,
Academic Publishing House EXIT (June 2009) 67–76

10. Ngai, G., Florian, R.: Transformation-based learning in the fast lane. In: NAACL
’01 on Language technologies, Morristown, NJ, USA, Association for Computa-
tional Linguistics (2001) 1–8

11. Tufis, D.: Tiered Tagging and Combined Language Models Classifiers. In: TSD ’99:
Proceedings of the Second International Workshop on Text, Speech and Dialogue,
London, UK, Springer-Verlag (1999) 28–33

12. Brill, E.: Some advances in transformation-based part of speech tagging. In: AAAI
’94: Proceedings of the Twelfth National Conference on Artificial Intelligence (vol.
1), Menlo Park, CA, USA, American Association for Artificial Intelligence (1994)
722–727

13. Megyesi, B.: Improving Brill’s POS tagger for an agglutinative language. In:
Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural
Language Processing and Very Large Corpora. (1999) 275–284

14. Gabriel, E., et al.: Open MPI: Goals, Concept, and Design of a Next Generation
MPI Implementation. In: Proceedings, 11th European PVM/MPI Users’ Group
Meeting, Budapest, Hungary (September 2004) 97–104

15. Adam Przepiórkowski, Rafał L. Górski, B.L.T., Łaziński, M.: Towards the National
Corpus of Polish. In: Proceedings of the Sixth International Language Resources
and Evaluation. (2008)

16. Acedański, S., Przepiórkowski, A.: Towards the Adequate Evaluation of Mor-
phosyntactic Taggers. In: Proceedings of the 23rd International Conference on
Computational Linguistics. (2010) To appear.

17. Łukasz Dębowski: Trigram morphosyntactic tagger for Polish. In: Intelligent In-
formation Systems. Advances in Soft Computing, Springer (2004) 409–413

